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Goals

• We are using M3D-C1 to calculate axisymmetric toroidal steady-states of a compre-

hensive two-fluid model.

• These steady-states are steady on all timescales and are the self-consistent solutions

including two-fluid MHD, gyroviscosity, flow, and anisotropic transport.

• In particular, we would like to understand the effects of two-fluid terms and gyrovis-

cosity on the steady-states.

• These steady-states may be used as accurate equilibria for three-dimensional stability

studies.
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Physical Model
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Method

• The simulation is initialized with a solution to the Grad-Shafranov equation.

• A loop voltage is applied by changing the flux at the boundary of the simulation

domain at a constant rate ψ̇ = VL/2π.

• A localized density source in included to offset diffusive flux out of the simulation

domain.

• The simulation is run until a steady state in all hydrodynamic quantities is reached.

• The resistivity is proportional to T−3/2. The vacuum region is simply a low tempera-

ture region outside the separatrix.

• Viscosity smoothly becomes vary large at the boundary to damp flows in the vacuum

region.
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Difficulties in Low Aspect-Ratio Simulations

• Nonlinear numerical instabilities (NNI) occur when there exist flows, highly anisotropic

heat flux, and ohmic heating in a high-S core.

– This is solved by re-calculating the resistivity after the pressure advance, then

re-doing the pressure advance.

• Initial transient dynamics lead to rapid transient flows and lead to NNI.

– This is solved by initially using a large viscosity, and ramping it down while ap-

proaching steady-state.

• Large flows near the boundary lead to NNI (especially in NSTX simulations).

– This is solved by keeping the viscosity large near the boundary.

• Profiles with sharp gradients in resistivity near the LCFS never reach steady state.

– Not yet solved...
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Field/η Iteration

• Some problems when simulation includes all of: low η, fast temperature convection,

strongly anisotropic heat flux, and ohmic heating.

– δt-scale oscillations; T may go negative in core.

• Can be mitigated by increasing spatial resolution, but not by decreasing time step

• Or, solve vn+1, nn+1, (B, p)n+1, ηn+1, (B, p)n+1.
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Low-S Case

• The “low-S” cases were run with the following parameters:

S0 ∼ 300, Se ∼ 10, 〈β〉 ∼ 20%, Re ∼ 105

δt = 5τA
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Low-S Case: Toroidal velocity

• Flows are extremely strong (∼ 100 km/s)

• Two-fluid/gyroviscous effects do not make much difference in this case

One fluid Two fluid; no GV Two fluid + GV
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Low-S Case: Poloidal velocity

Two fluid; no GV Two fluid + GV Difference

• Poloidal flows in core ∼ 5× 10−4 vA.
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Comparison with Theory

• A steady-state satisfying ∇p = J×B to lowest order will have:
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Comparison with Aydemir [6]

• Our results agree with Aydemir’s observations

that:

– Toroidal flows are greatest near the x-points,

reaching ∼ 10 km/s.

– Flipping the sign of Bϕ flips the sign of the

toroidal velocity, but not poloidal velocity.

– Total viscous torque oppositely directed to

toroidal flow at the divertor x-point.

• These facts do not change at high β.

• Bootstrap current is not necessary to achieve these flows.
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Poloidal Dependence

• T and RBϕ are good flux quantities; n is not.

• p has essentially the same poloidal dependence as n.

• The parallel velocity (Φ) and angular momentum (Ω) functions of Guazzotto et al. [7]

are not found to be approximately constant on flux surfaces.
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High-S Case: No Steady State (yet)

• The “high-S” cases were run with the following parameters:

S0 ∼ 105, Se ∼ 102, β0 ∼ 13%, Re ∼ 105

δt = 200τA
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High-S Case: Toroidal Velocity

One fluid Two fluid; no gyro Two fluid + gyro

vϕ ≈ 0.02vA ≈ 20km/s vϕ ≈ 0.03vA ≈ 30km/s
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Stability

• We are adding the capability for linear

nonaxisymmetric stability calculations.

• This capability is implemented for the

two-field model.
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Conclusions

• We have been able to obtain self-consistent steady-states of the extended-MHD equa-

tions for realistic plasma configurations with free boundaries.

• The flows observed in the steady-states are in relatively good agreement with Pfirsch-

Schlüter theory.

• Gyroviscosity leads to parallel flows in the core.

• The strong flows near the x-points observed by Aydemir dominate in low-S case, but

two-fluid effects and gyroviscosity dominate in high-S case.
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Future Work

• To get to steady-state with both realistic resistivity and viscosity using this method

will require more work (more spatial resolution? different time step?). There is no

guarantee that a steady state exists.

• We need better modeling of edge/SOL quantities for realistic simulations.

– Density sink; realistic boundary shapes

– Pedestal modeling for H-mode

• Need some model for neoclassical parallel viscosity.

• Coupling to realistic transport models

• We are moving forward with linear 3D capability; thinking about nonlinear 3D capa-

bility.
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